High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates.

نویسندگان

  • P C Simpson
  • D Roach
  • A T Woolley
  • T Thorsen
  • R Johnston
  • G F Sensabaugh
  • R A Mathies
چکیده

Capillary array electrophoresis (CAE) microplates that can analyze 96 samples in less than 8 min have been produced by bonding 10-cm-diameter micromachined glass wafers to form a glass sandwich structure. The microplate has 96 sample wells and 48 separation channels with an injection unit that permits the serial analysis of two different samples on each capillary. An elastomer sheet with an 8 by 12 array of holes is placed on top of the glass sandwich structure to define the sample wells. Samples are addressed with an electrode array that makes up the third layer of the assembly. Detection of all lanes with high temporal resolution was achieved by using a laser-excited confocal fluorescence scanner. To demonstrate the functionality of these microplates, electrophoretic separation and fluorescence detection of a restriction fragment marker for the diagnosis of hereditary hemochromatosis were performed. CAE microplates will facilitate all types of high-throughput genetic analysis because their high assay speed provides a throughput that is 50 to 100 times greater than that of conventional slab gels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis.

The design, fabrication, and operation of a radial capillary array electrophoresis microplate and scanner for high-throughput DNA analysis is presented. The microplate consists of a central common anode reservoir coupled to 96 separate microfabricated separation channels connected to sample injectors on the perimeter of the 10-cm-diameter wafer. Detection is accomplished by a laser-excited rota...

متن کامل

High-pressure gel loader for capillary array electrophoresis microchannel plates.

Microfabricated capillary array electrophoresis (microCAE) microchannel plates are the next generation of bioanalytical separation devices. To fully exploit the capabilities of microCAE devices, supporting technology such as robotic sample loading, gel loading, microplate washing, and data analysis must be developed. Here, we describe a device for loading gel into radial capillary array electro...

متن کامل

High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor.

High throughput DNA sequencing has been performed by using a microfabricated 96-channel radial capillary array electrophoresis (microCAE) microchannel plate detected by a 4-color rotary confocal fluorescence scanner. The microchannel plate features a novel injector for uniform sieving matrix loading as well as high resolution, tapered turns that provide an effective separation length of 15.9 cm...

متن کامل

Microfabrication Technology for the Production of Capillary Array Electrophoresis Chips

Improvements in the fabrication, sample handling and electrical addressing of capillary array electrophoresis (CAE) chips have permitted the development of high density, high-throughput devices capable of analyzing 48 samples in about 20 minutes. The fabrication of high density capillary arrays on 10 cm diameter substrates required the characterization of glasses that yield high quality etches ...

متن کامل

Genotyping energy-transfer-cassette-labeled short-tandem-repeat amplicons with capillary array electrophoresis microchannel plates.

BACKGROUND Genetic analysis of microsatellite DNA is a powerful tool used in linkage analysis, gene mapping, and clinical diagnosis. To address the expanding needs of studies of short tandem repeats (STRs), we demonstrated high-performance STR analysis on a high-throughput microchannel plate-based platform. METHODS Energy-transfer-cassette-labeled STR amplicons were separated and typed on a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 1998